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O b l i q u e  S u b d u c t i o n  o f  a N e w t o n i a n  F l u i d  S l a b  

ZHENG-KANG SHEN 1 

Abstract--A Newtonian fluid model is proposed to describe the oblique subduction of a planar 2-D 
slab. The slab is assumed to subduct in response to the ridge push force exerted along the trench, the 
slab pull force at the downdip of the slab, the gravitational body force within the slab, and the frictional 
resistance force at the upper surface of the slab. Because the slab motion along strike is being resisted 
by the frictional resistance at the interplate coupling area while the slab motion along the trench normal 
is being maintained by the gravitational pulling, the slab turns gradually toward the trench normal 
direction as it subducts. This model offers an alternative explanation for "earthquake slip partitioning," 
the observation that the earthquake slip vectors deflect away from the relative plate motion direction 
toward the trench normal direction along most of the oblique subduction zones worldwide. Numerical 
models suggest that slip partitioning caused by slab deformation could be as much as 30% at 100 km 
downdip of the slab. The slab viscosity, the plate coupling width, the interplate resistance coefficient, the 
slab pull force, and the gravitational body force are all important in determining the geometry of the 
slab subduction. 
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In troduct ion  

Oblique subduct ion exists at most  o f  the subduct ion zones worldwide where the 
subducting plate thrusts obliquely under  the overlying plate. Mechanical  models 
have been developed to describe normal  subduct ion (e.g., HAGER and O'CONNELL, 

1978; TURCOTTE and SCHUBERT, 1982); however, impor tant  questions for oblique 
subduct ion remain to be answered. Fo r  example, could the oblique o f  a downgoing  

slab change during its subduction? I f  the answer is yes, what  would be the 

controll ing factors that  would cause such deflection and by how much? Al though  
considerable progress has been made  in recent years in developing 3-D global 

mantle convect ion models using constraints f rom the geoid, plate velocity, and 

seismic t o m o g r a p h y  data  (e.g., HAGER et al., 1985; FORTE, and PELTIER, 1987; 
RICHARD and VIGNY, 1989; HAGER and CLAYTON, 1989; CADEK et al., 1993), 

these models usually provide only convect ion patterns o f  very large scale ( thou-  
sands o f  kilometers) and sparse detail about  the trajectories o f  subducting slabs. 
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In this study a simple Newtonian fluid model is proposed to describe the updip 
portion of a subduction slab. This 2-D slab extends further along the trench parallel 
direction than along the downdip direction, and is subject to four major forces: the 
ridge push force applied along its top edge at the trench, the slab pull force at its 
downdip, frictional resistance at the interface between the downgoing slab and the 
upper plate, and the gravitational body force caused by excess density inside the slab. 
Because the degree of plate coupling is correlated with the plate subduction rate 
(RUFF and KANAMORI, 1980), we assume that the frictional resistance at the 
interplate surface is proportional to the plate motion velocity. If we assume that the 
viscosity and the frictional coefficient do not change with depth, this problem can 
be solved analytically. 

This proposed oblique subduction model provides another way to examine the 
mechanism of earthquake slip partitioning. It has been observed that for most 
oblique subduction zones, slip directions of interplate subduction zone earthquakes 
tend to fall between the relative plate motion direction and the trench normal 
direction. Such deflection of the earthquake slip vector from the relative plate motion 
is called slip partitioning (FITCH, 1972). If the earthquake slip vectors reflect the local 
relative motion between the upper and lower plates, the missing part of the relative 
plate motion must take place somewhere else in the plates. This is usually explained 
by deformation in the upper plate (DEWEY, 1980; JARRARD, 1986; MICHAEL, 1990). 
One such model proposed by BECK (1983, 1991) and MCCAFFREY (1991, 1992, 
1993) considered that part of the relative plate motion was accommodated by shear 
motion along a fault at the back of a silver plate located above the seismogenic zone 
of the subducting plate. In contrast, Yu et al. (1993) proposed backarc spreading 
as a leading cause of the slip partitioning. PI.ATT (1993) developed a series of 
mechanical models to explain upper plate deformation caused by oblique subduction. 
Recently however, Lxu et al. (1995) proposed deformation within the subducting slab 
as one of the important contributors to slip partitioning. They investigated the 
Circum-Pacific subduction zone earthquakes and found correlations between the 
earthquake slip partitioning and the calculated slab pull force. Their results suggested 
that the downgoing slab may be torqued by the slab pull and the frictional resistance 
at the interplate surface, causing the slab subduction direction to rotate. 

This study, from the mechanical modeling point of view facilitates the answer to 
the question: can deformation of the descending slab be an important factor 
controlling the earthquake slip partitioning? 

Mechanical Assumptions 

The following assumptions are considered in the mechanical modeling: 
1. The subducting slab is a 2-D planar plate, with a uniform thickness H. No 

plate bending is considered, and deformation associated with the curvature of 
a spherical earth surface is neglected. 



Vol. 145, 1995 Oblique Subduction of a Newtonian Fluid Slab 563 

2. The slab is a Newtonian fluid. The elastic effect of the slab is not considered 
because strains caused by such an effect would usually be two orders of 
magnitude smaller than the strains caused by the viscous effect during the 
subduction process. 

3. Slab deformation in the direction normal to the plate surface is small and can 
be neglected. The stresses and the strain rates in the slab can be approxi- 
mated by their respective averages over the thickness of the slab. 

4. Three external forces are applied at the slab boundaries: the ridge push 
exerted at the upper boundary, the slab at the lower boundary, and the shear 
resistance at the interface between the slab pull and the upper plate. The 
mantle resistance between the lower surface of the slab and the upper mantle, 
significant or not, could also be included as part of the interface resistance. 
Outside the slab, hydrostatic equilibrium pressure is assumed. The slab is also 
being pulled internally by the gravitational body force resulting from the 
excess density within the slab. The slab extends further along the trench 
strike than along the downdip direction, and the forces at the two lateral 
boundaries of the slab are negligible. 

5. The plate motion is considered on a geological time scale, so that episodic 
variations of plate velocities and stresses, which are on a time scale of about 
hundreds of years, are smoothed out; only the long-term averages of these 
physical properties are important and are assumed to be in a steady state. 

6. The upper plate is stationary. The interface resistance is proportional to the 
slab velocity relative to the upper plate. The resistance coefficient and the 
viscosity of the slab remain constant throughout the entire slab. 

Force Balance Equations 

We consider the subducting slab moving at a steady velocity U and under 
stresses aij. Figure 1 shows the setting of a plunging slab, with the z = 0 plane 
coinciding with the slab surface, the y = 0 plane at the downdip boundary between 
the interpIate coupling and decoupling, the y = L plane at the earth's surface, and 
the z = - H  plane at the lower surface of the slab. For a Newtonian fluid the force 
balance equations are (CHUNa, 1988) 

- p u , , ,  - p ~ , j ~  - p , ,  + ,~,~j + ~(c~,jj + v:,ij) + x ,  = o (1) 

where U~ is the slab velocity, i, j = x, y, p is the density, p the hydrostatic pressure, 
Xi the body force, J( = p~, and p and )~ are the first and second viscosity coefficients, 
respectively. The first term on the left-hand side vanishes for steady flow. The 
second term is several orders of magnitude smaller than the other terms and can be 
neglected. 

Based on our third assumption, we can integrate Equation (1) from z = - H  to 
z = O, and take the average of each term over the thickness of the slab. Outside the 
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Figure 1 
Model setting of a subducting slab. The plate has a uniform thickness H, the dark grey area denotes the 
interplate coupling zone of width L within the updip of the plate. The x axis is along the trench strike, 
the y axis along the updip, z = 0 is the plane of the interplate surface, and the y = 0 plane denotes the 
boundary of interplate coupling/decoupling..The slab dips at  an angle 0a, and is being pulled externally 
by a slab pull force T at the boundary cross section of y = 0, and internally by a gravitational body force 

of Xb. The slab velocity at the earth's surface before subduction is l?. 

slab the pressure is under hydrostatic equilibrium pogh. Po is the density outside the 
slab and h the depth measured from the surface of  the earth. At the upper and 
lower boundaries of  the slab, P.x = 0 because the pressure has no gradient along x, 
and p,y = Po sin Od. Oa is the dip angle of  the slab. Integrating of  p,y over z yields 
fi,yH, where/Sy is the mean pressure derivative with respect to y./~,y = g Po sin 0d if 
we assume that the mean of  the pressure derivative approximately equals the 
pressure derivatives at the upper and lower surfaces of the slab. 

Let ui be the mean velocity Ui over z. The integration of the velocity terms in 

Equation (1) over z yields 2uj, i jH + #(u~o j + uj, i f lH - cui, where i, j = x, y. The last 
term cui derives from the shear resistance due to coupling at the interface between 
the slab and the upper plate as stated in assumption No. 6, where c is the resistance 

coefficient at the interplate surface. 
With all aforementioned developments considered, Equation (1) becomes: 

c 
,~uj, o + #(uioj + tg, o) - ~ ui - Apg sin 0 d (~iy = 0 (2) 

where Ap = p -- Po. 
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The velocity field can be generated by two potential functions @ and A 

fi = Vq) + V x A~ r. (3) 

For  a compressible slab, the force balance equations can be satisfied if the two 
potential functions satisfy the following equations 

- -~ r - X ' y  = 0 ( 4 )  V2~ 

1 
V2A - ~ A  = 0  (5) 

where cr 2 = (2 + 2#)H/c,  f12 = ]. , tH/c, and X' = Apg sin 0d/2 + 2#. 
If  the fluid is incompressible, a similar derivation yields 

V2(I D = 0 (4') 

1 X 
V 2A - -  @4.  A -- -- x = 0. ( 5') p~ C 

For the 2-I) problem we are dealing with here, incompressible fluids sometimes lack 
solutions for arbitrary boundary conditions. 

Let us assume the fluid is compressible. To have one more constraint on the 
viscous fluid, we assume the fluid obeys the Stokes' hypothesis, i.e., 2 - - 2 / 3 i t .  
This assumption is widely accepted for the real earth (RANALLI, 1987). 

We introduce four boundary conditions for the problem, assuming we know the 
starting velocity at the upper boundary, and the stresses at the downdip of the 
interplate coupling. They are 

u~ ty- r = F(x)  

uy ly- L = G(x )  

Cry [y = o = P(x)  (6) 

axy ]y = o = Q(x). 

Let us first consider the simplest case of oblique subduction, i.e, that the obliquity 
and the subduction rate at the upper boundary are constant. We also assume a 
constant pulling force and zero shear at the downdip of  the interplate coupling, The 
boundary conditions become 

uG=L= vx 

uyb=L = G 
r = T (7) 

O'xyly = 0 ~ O. 

To solve the problem we consider the potential functions as the following 

qb = q~c cosh k~y + (G sinh k~y + ?pyy 

A = ac cosh k , y  + as sinh kay. 

(8) 

(9) 
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From Equations (4), (5), (8), and (9), we obtain kr = l/a, ka = 1//3, and 
ehy = --ApgH sin Oa/c. The solution to the problem is thus 

3 T 

~b s _ Vy - ~by 3 T tanh k~L 
k6 cosh kc~L 4 k~,laH 

(10) 
a c = 0  

v~ 
as - /ca  cosh kaL" 

The corresponding velocity is 

v~ 
Ux - cosh karL cosh kay 

(11) 
Uy = k4,(c~ sinh koy + ~a~ cosh k~,y) + (ay. 

This solution shows that the along-strike velocity diminishes as subduction 
proceeds, and that the rate is determined by the constant of  k~. The along-dip 
velocity component is manifested by the combined effect of  the gravitational body 
force, the slab pull at the lower end of the interplate coupling, and the shear 
resistance at the plate interface. 

If the boundary conditions are more generic, we assume that they vary along the 
trench strike, and can be expressed by Fourier series, in the forms of 

F(x) = ~ f ~  sin k,,x 

6(x) = ~ g~ cos k.x 
; 7  

P(x) = ~ p .  cos k .x  
n 

(12) 

Q(x) = ~ q. sin k .x .  

The potential functions then become 

@ = ~ ( ~  cosh k~.y + ~b., sinh k~.y) cos k .x  + 4~yy 
n 

(13) 

A = ~ (anc cosh ka.y + a,,~ sinh ka.y) sin k.x. (14) 
n 

From Equations (4), (5), (13), and (14), we obtain k+n=x/k~+(1/cd), 
ka. = x /k]  + (1/f12), and 4y = - A p g H  sin Oa/c. 
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The boundary conditions require 

( O* + OA) = F(x) 
~xx Oy /b=L 

OA = G(x) 
y = L  

2 (2 0209 02* 02A ~ (15) 
~ ~ &2 30xay j ly :o=P(x)  

( ~2(I) 02A ~2A~ 
# 2 Ox ay 0 7  + Oy 2 j[y = o = Q(x). 

From Equations (12), (13), (14), and (15), it is clear that for each rt-th component 
we have four equations to solve for four unknowns (a.c, cb.., a.c, and a... 

Let us solve the problem with a specific set of boundary conditions. Assuming 

Ux(X)  [y = L = V sin kex 

u/x )[y=L = - Vcos k~x 
(16) 

O'y (X)[y = 0 = T 

~.AX)ly=0 = 0 

where V and T are constants. The first two boundary conditions define a constant 
velocity amplitude of the slab, with a varying obliquity of subduction at the trench 
where the subduction starts. These boundary conditions are approximately true for 
many subduction zones, such as the Aleutians, Tonga, and the New Hebrides, where 
the subduction directions vary monotonically by a large amount but the changes in 
velocity amplitudes are relatively small. The third boundary condition gives a constant 
slab pull force at the lower edge of the interplate coupling zone. The slab pull force 
is parallel to the y axis because the gravitational force has no component in the trench 
strike direction. If the slab pull force is a dominant force there, it should be close 
to one of the principal stresses, thus at the boundary where the slab pull applies, the 
shear stress should be close to zero, which is the fourth boundary condition. 

Now all the equations in (15) are zero except two sets: k, = 0 and k, = kb. These 
two sets of the equations become 

0 0 kao sinh kaoL 
k~o sinh kr k+o cosh k~,oL 0 

kao cosh kaoL" 
0 

2k~o 0 0 0 

0 0 k2o 0 

•b0• 
qSo~ 

aOc 

aos 

-- ~b), 

0j 
(17) 
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and 

[kkbCoshkr L]IdPbcl 
,s sinh k,~L -k,s cosh k,~L --kb cosh karL -k b sinh k,,sL 14bb~ I 

I I 

-2kbkos kL +k~ 0 Lat, s 3 

The solutions to Equations (17) and (18) are 

T 
(~Os : - -  

C 

(18) 

Apg sin 0 a H T 
~bo< - ck~-o cossh k~ooL c tanh k~oL 

aoc = 0 

aos = 0 

4)~ = g c~2 +c1~ - (c1~ + c~)  c4~  
c4U 

C~ 
a~<- ~ ~< 

C 3 1  �9 

abs -- ~34 ~)bc 

where 

(19) 

Gl\f  C4~ 
. . . .  

and C?. are the components in the 4 x 4 matrix of Equation (18). 
We numerically examine solutions using the parameters given in the following, 

which will be justified later. The slab interplate coupling width L is given as 200 km, 
slab thickness H is 60 km, the velocity amplitude at upper boundary V is 10 cm/yr, 
and its wave number k b is/~/2000 km -1. The viscosity # is assumed to be 1022 Pa-s ,  
the frictional coefficient c is taken as 1.8 • 1016 Pa-s /m,  the gravitational body 
force Xb = Apg sin Oa = 7.1 • 102 Pa/m, and slab pull at the lower boundary of  the 
slab T = 3.0 x 1012 N/m. We label this set of parameters as the "preferred" model 
parameters. For  a model with a constant upper boundary obliquity of  45% 
(Equation 11), Figure 2 delineates the subducting slab trajectory of  the preferred 
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Figure 2 
Slab trajectories predicted by models with a constant subduction obliquity at the earth's surface given 
by Equation (11). Subduction rates and directions are shown by arrows. The preferred model parameters 
are used in the models. Models with five different slab pull forces, ranging from -3.0 to 9.0 x 10 ~2 N/m, 
are examined. The preferred model (T = 3 x 10 ~2 N/m) predicts a nearly constant subduction rate, with 

oblique angles rotating gradually towards the trench normal. 

model, as well as trajectories of  the same model but different slab pull forces. Figure 

3 supplies the velocity profile for the model of  variable obliquity along trench strike 
(Equation 19). 

I f  we assume a slab pull force of  3.0 x 1012 N/m, the constant and variable 

obliquity models given above describe the subduction process driven dominantly by 

the gravitational body force, which is offset mainly by the along-trench normal  

component  of  the shear resistance at the slab upper surface. Therefore, we see an 

almost constant velocity amplitude from top to bottom, with the obliquity angle 

rotating gradually toward trench normal.  At the mid-point of  the interplate 

coupling zone (100 km), the oblique angle is 59 ~ for the constant obliquity model, 
which represents about  a 30% deflection from its original 45 ~ obliquity prior to 
subduction. Obliquity at 100 km downdip for the variable obliquity model has 
approximately 25% deflection. Both models suggest that the obliquity angle change 
occurs mostly in the upper part  of  the slab. While the redtiction of  the oblique angle 
could be 44% and 32% of  the original value at the trench for the two models 
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Figure 3 
Velocity profile within the interplate coupling zone of a slab. This slab begins the subduction at the 
trench with a uniform rate and a monotonically increased obliquity along-trench strike given by the 
model of Equation (19). The preferred model parameters are used. Similar to the previous model of a 
constant obliquity along-trench strike (Eq. 11), this model predicts a nearly constant subduction rate, 

where the oblique angles rotate gradually towards the trench normal. 

respectively after 200 km subduction, 30% and 25% of the reduction could be 

reached halfway through the process. 

Model Justification 

In the models given above we have made assumptions for several parameters. 

Some have well-known constraints, others do not. It is necessary to examine how 

the variations of those parameters would affect our models, and to assess reason- 

able ranges of the parameters. The following discussions are focused on the 

variations of  the model with constant obliquity at earth's surface, since this model, 

although simple, is sufficient to test all the important parameters. 

Slab Pull Force T 

Figure 2 shows the effect of the slab pull force acting at the bottom of the 

interplate coupling zone on the trajectory of the slab as well as on the amplitude of 

the subduction rate. The slab is being stretched or compressed mostly at the bottom 
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of the coupling zone, depending on the type and amount of the slab pull force 
exerted there. A negative slab pull reflects the resistance of the mantle material to 
the penetrating slab. Such resistance tends to push the slab velocity toward the 
trench strike direction, therefore reducing the degree of slip partitioning. Assuming 
the same density anomaly as we use in the preferred model, a slab pull force of 
3.0 x 1012 N/m is equivalent to an accumulative gravitational pulling force inside 
the slab of about 72 km downdip. This estimate leads to the depth of a neutral 
downdip stress of about 190 km depth, consistent with the findings of ZHOU (1990) 
that most of the neutral downdip stress zones are located between 100 and 300 km 
depth in the NW Pacific and the Tonga-Kermadec subduction zones. The change of 
obliquity with respect to the slab pull force around this preferred model is about 
0.9~ at 100 km depth, or about 2% of its original oblique angle at the 
surface per 10~2(N/m) slab pull force increment. 

Viscosity I~ 

Constraints on the viscosity of the lithosphere have been derived by studying the 
viscous responses of the earth to an external load, such as measuring the post- 
glacial rebound in Canada (PELT~ER, 1980; WALCOTT, 1972, 1973). A model of a 
Newtonian mantle would require the viscosity to be in the range of 1021-1022 Pa-s  
to explain the postglacial rebound data (RANALLI, 1987). The subducting slab 
however is colder therefore stronger than the mantle. KAULA (1980) estimated the 
lithosphere viscosity to be about 1022 Pa-s  by analyzing the spherical harmonic 
spectra of plate velocities, gravity, topography, and heat flow data. We test the 
effects of different viscosity values on our model and present the results in Figure 
4. If all the parameters coincide as in the previous model, and the viscosity is varied 
from 5 x 10 21 Pa-s  to 5 x 1022Pa-s, then the results indicate that for higher 
viscosities the slab becomes stiffer, and exhibits less deflection of the oblique angle. 
Although both the subduction rates and the obliquities are affected, the effect of 
viscosity variation on the oblique angles is more significant. The degree of "parti- 
tioning," defined here as ~he ratio of the obliquity change at 100 km downdip over 
the original obliquity at the surface, increases from 8% to 47% as the viscosity 
decreases from 5 x 1022 Pa-s  to 5 x 1021 Pa-s.  The changes in the subduction rate 
are within 5% for the same range of viscosity variation. These results suggest that 
the plate subduction rate would not depend substantially on the viscosity, but the 
subduction direction would strongly depend on the viscosity. 

Friction Coefficient c 

FORSYTH and UYEDA (1975) estimated the relative strength of the plausible 
driving forces of plate motions. They postulated the relative ridge push per unit 
length along the strike to be Frp = 0.36 and the relative slab resistance per unit 
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Figure 4 
Slab trajectories predicted by models with different viscosity. The viscosity values tested are 0.5, 0.7, 1.0, 
2.0, and 5.0. The remaining parameters are those of the preferred model. This result shows that the 
obliquity decreases following the decrease of the viscosity, corresponding to larger slip partitioning. The 

velocity amplitude changes are less significant than the changes in obliquity. 

length along the strike and per plate motion velocity (cm/yr) to be F,r--0.89. 
Assuming the slab resistance at the subduction zone comes from the interplate 
resistance, we can write the ratio of the two forces as 

F,r eL (20) 
Frp ~rp W 

where L is the length of the interplate coupling, W the thickness of the plate near 
the ridge, and arp the ridge push stress. ARTYUSHKOV (1973) estimated arp to be 
about 230 bars. I f  we assume L = 2000 km and W = 30 kin, the friction coefficient 
c is then 1.8 • 1016 Pa-s /m.  This value is obtained after rescaling the assumed plate 
motion velocity. Forsyth and Uyeda assumed 7 cm/yr for the velocity when deriving 
the relative strength ratio, while 10 cm/yr is assumed in this study. As FORSYTH and 
UYEDA (1975) pointed out, the values obtained by such studies are only orders of 
magnitude estimates, due to the uncertainties of their model as well as the 
uncertainties of data. We test the friction coefficient c at five different values, 
covering a broad range of 0.4 • 1016-7.2 z 1016 Pa-s /m in Figure 5. Results show 
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Figure 5 
Slab trajectories predicted by models with different frictional resistance coefficient. The frictional 
resistance coefficient is assumed 0.4, 0.9, 1.8, 3.6, and 7.2 x 1016 Pa-s/m. The remaining parameters are 
those of the preferred model. A steady decrease of the subduction rate is found along with the increase 

of the frictional resistance. The oblique angle is also slightly decreased. 

that the oblique angle and the subduction rate decrease as the friction coefficient 
increases. However, the obliquity of the subducting slab is much less sensitive to the 
friction coefficient than the subduction rate is. 

Gravitational Body Force Xb 

The subducted slab is colder than its surrounding mantle and therefore contains 
higher density. The density anomaly of the slab causes an extra gravitational 
pull within the slab. The density anomaly within a downgoing slab can be 
inferred from gravitational studies (GARLAND, 1979). A gravity anomaly study 
across the Japan Trench placed a 100 kg/m 3 density anomaly in the slab (HATHER- 
TON, 1969). Similar values can also be obtained from mantle convection models. 
The excess density in a slab can be expressed as Ap =pc~ AT, where e is the 
coefficient of thermal expansion and AT the temperature difference inside and 
outside the slab. Using the values from TVRCOTTE and SCHUBERT (1982), 
A p = 3 . 3 x  103kg/m 3, c~=3x  10 - s~  -1, and A T =  800~ we estimate Ap as 
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Figure 6 
Slab trajectories predicted by models with different gravitational body force. The gravitational body 
force values are set at 3.1, 5.1, 7.1, 9.1, and 11.1 x 102 N/m 3 while the remaining parameters are those 
of the preferred model. A steady decrease is found for the obliquity with a moderate increase of the 

subducqon rate along with the increase of the gravitational body force. 

about 80 kg/m 3, which is quite close to the value given by the gravitational study 

mentioned above. Although the results of  such studies suffer from large uncertain- 

ties and are model dependent, it is believed that the density anomaly in a slab 
should be on the order of  100 kg/m 3. Figure 6 shows the testing of  the effect of the 

gravitational body force on the subducting slab. As expected, greater body force 
yields a faster subduction rate and larger oblique angle deflection. The effect is 

significant for both of  them. 

Interplate Coupling Width L 

The interplate coupling width L can vary region by region. The maximum width 

of  seismic coupling derived from ruptures of great earthquakes is about 200 km 
(LAY et al., 1982). However the shear resistance at the interplate surface is likely 
to exist beyond the seismic coupling zone, where the brittle coupling is replaced 
by the viscous traction. We test the coupling width effect on our model in Figure 
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Figure 7 
Slab trajectories predicted by models with different interplate coupling width. The interplate coupling 
width is assumed 100, 150, 200, 250, and 300 km while the remaining parameters are those of the 
preferred model. Both the oblique angle and the subduction rate are affected by the interplate coupling 

length. See text for more detailed discussions. 

7. As can be seen, the deflection of the oblique angle is related to the width of the 

coupling zone. The longer the coupling zone is, the more lateral resistance exerted 

on the slab, and therefore the more slip partitioning. The obliquity changes from 

53 ~ to 61 ~ at 100 km depth when the width of  the coupling zone increases from 

100 km to 300 kin. This represents a change of  about  19-35% from its original 45 ~ 

obliquity at the earth's surface. The subduction rate shows negligible dependence on 
the coupling width. 

The change of  coupling width is correlated with the change of  slab pull force in 

this study, because the point o f  slab pull force applied to is at the bot tom of  the 

coupling zone in our model. A longer coupling width basically moves the point of  

external slab pull downward. Such an effect could be tested by varying the slab pull 

force and the interplate coupling width simultaneously. However such tests would 

be complex and we choose to limit our test to a single parameter  variation here. At 

the circumstances when slip partitioning is nearly complete at the bot tom of  the 
coupling zone, such effects could not be significant. 
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Discussion and Conclusions 

Some tectonic features in the real earth are not being modeled in this study, 
such as temperature-dependent viscosity, forces generated by the curvature of the 
slab, and along-strike deformation of the upper plate caused by the shear of our 
obliquely subducted slab. These factors will somewhat affect the outcome of our 
model, especially the deformation of the upper plate, which might cause less 
deflection of the slab obliquity by reducing the lateral shear exerted on the surface 
of the slab. Despite these shortcomings, however, this model has the advantage of 
being a simple model, and it reveals some important features of an obliquely 
subducted slab. 

In this study a Newtonian fluid is used to model an oblique subduction process. 
The slab is acted on by an internal gravitational body force, an external slab pull 
force at the downdip end, and a resistive shear force exerted at the interplate 
surface between the slab and the upper plate. The shear force reduces the obliquity 
of the subduction and makes the slab motion direction change gradually toward the 
trench normal. The reduction in obliquity is most effective when the obliquity is 
large, therefore the mechanism becomes a good candidate to explain earthquake 
slip partitioning at the upper part of the interplate coupling. In a model with 
reasonable parameter values, a 30% change of obliquity is observed halfway into 
the interplate coupling zone. The viscosity, the gravitational body force, the slab 
pull at downdip, the friction resistance coefficient, and the interplate coupling width 
all play important roles in controlling oblique subduction. A sizeable range of slip 
partitioning values could be obtained by varying model parameters still within their 
plausible ranges. 
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